Tag: 五角场水磨会所

jgwcorbs

STUDENT SPOTLIGHT 6 Wilmington Students Graduate From Bridgewater State University

first_imgBRIDGEWATER, MA — More than 2,100 bachelor’s degrees in the sciences, arts, business and education were awarded during two ceremonies at Bridgewater State University on Saturday, May 18 on the Boyden Quadrangle. It was the 178th Spring Commencement Convocation in the university’s history.The following Wilmington residents were among those who graduated:Kimberly DonoghueCarlyn GillisErin HartyJulianne HooperJared LloydKatherine McKenna(NOTE: The above modified announcement is from Bridgewater State University.)Like Wilmington Apple on Facebook. Follow Wilmington Apple on Twitter. Follow Wilmington Apple on Instagram. Subscribe to Wilmington Apple’s daily email newsletter HERE. Got a comment, question, photo, press release, or news tip? Email wilmingtonapple@gmail.com.Share this:TwitterFacebookLike this:Like Loading… RelatedSTUDENT SPOTLIGHT: 6 Wilmington Students Named To Dean’s List At Bridgewater State UniversityIn “Education”STUDENT SPOTLIGHT: 3 Wilmington Students Graduate From Bryant UniversityIn “Education”STUDENT SPOTLIGHT: Wilmington’s Kristen Luise Graduates From University Of New HavenIn “Education”last_img read more

CONTINUE READING
pjhhgrso

Get early access to Elder Scrolls Blades on iOS and Android

first_imgBethesda describes The Elder Scrolls: Blades as a “classic dungeon crawler reimagined.” Your customized character is a Blade, one of the Empire’s top agents, who’s forced into exile. While you’re fleeing, your hometown is destroyed. The company said it plans to add new features to the game after the launch. It’s letting early-access players into the game in waves, but there’s still time to sign up here. Bethesda also provided a full list of supported devices. Early access supports English, French, Italian, German, Spanish and Russian. Earlier this week, to kick off its celebration, Bethesda offered a free PC copy of Elder Scrolls III: Morrowind. 3:18 Tags Now playing: Watch this: Elder Scrolls: Blades hits the new iPhone Bethesda is offering early access to The Elder Scrolls: Blades. Bethesda Gaming studio Bethesda said on Twitter Wednesday that The Elder Scrolls: Blades is getting a limited early-access program on iOS and Android. The early access is part of the 25th anniversary celebration for the Elder Scrolls game series. “Ready to play? We’re inviting players in waves, so make sure to keep an eye on your email for the invite,” Bethesda said. As part of our #TES25 celebration, we’re excited to announce that The Elder Scrolls: #Blades is officially in Early Access!Ready to play? We’re inviting players in waves, so make sure to keep an eye on your email for the invite.Here’s the updated FAQ: https://t.co/TZsYW4pnJy pic.twitter.com/2reothr8Zs— The Elder Scrolls (@ElderScrolls) March 27, 2019center_img Comments Share your voice 2 Gaming Mobile iOS 12last_img read more

CONTINUE READING
jgwcorbs

Bright lights small crystals Scientists use nanoparticles to capture images of single

first_img Dr. P. James Schuck discussed the paper that he, Dr. Bruce E. Cohen, Dr. Daniel J. Gargas, Dr. Emory M. Chan, and their co-authors published in Nature Nanotechnology, starting with the main challenges the scientists encountered in: developing luminescent probes with the photostability, brightness and continuous emission necessary for single-molecule microscopydeveloping sub-10 nm lanthanide-doped upconverting nanoparticles (UCNPs) an order of magnitude brighter under single-particle imaging conditions than existing compositions, lanthanides being transition metals with properties distinct from other elements”The most common emitters used for single-molecule imaging – organic dyes and quantum dots – have significant limitations that have proven extremely challenging to overcome,” Schuck tells Phys.org. He explains that organic dyes are generally the smallest probes (typically ~1 nm in size), and will randomly turn on and off. This “blinking” is quite problematic for single-molecule imaging, he continues, and typically after emitting roughly 1 million photons will always photobleach – that is, turn off permanently. “This may sound like a lot of photons at first,” Schuck says, “but this means that the dyes stop emitting after only about 1 to 10 seconds under most imaging conditions. UCNPs never blink.”Moreover, Schuck continues, it turns out the same problems exist for fluorescent quantum dots, or Qdots, as well. However, while it is possible to make Qdots that will not blink or photobleach, this usually requires the addition of layers to the Qdot, which makes them too large for many imaging applications. (A quantum dot is a semiconductor nanocrystal small enough to exhibit quantum mechanical properties.) “Our new UCNPs are small, and do not blink or bleach.”Due to these properties, he notes, UCNPs have recently generated significant interest because they have the potential to be ideal luminescent labels and probes for optical imaging – but the major roadblock to realizing their potential had been the inability to design sub-10 nm UCNPs bright enough to be imaged at the single-UCNP level. © 2014 Phys.org Schuck mentions another advantage of upconverting nanoparticles – namely, they operate by absorbing two or more infrared photons and emitting higher-energy visible light. “Since nearly all other materials do not upconvert, when imaging the UCNPs in a sample, there is almost no other autofluorescent background originating from the sample. This results into good imaging contrast and large signal-to-background levels.” In addition, while organic dyes and Qdots can also absorb IR light and emit higher-energy light via a nonlinear two+ photon absorption process, the excitation powers needed to generate measurable two-photon fluorescence signals in dyes and small Qdots is many orders of magnitude higher than is needed for generating upconverted luminescence from UCNPs. “These high powers are generally bad for samples and a big concern in bioimaging communities” Schuck emphasizes, “where they can lead to damage and cell death.” Schuck notes that two other key aspects central to the discoveries mentioned in the paper – using advanced single-particle characterization, and theoretical modeling – were a consequence of the multidisciplinary collaborative environment at the Foundry. “This study required us to combine single-molecule photophysics, the ability to synthesize ultrasmall upconverting nanocrystals of almost any composition, and the advanced modeling and simulation of UCNP optical properties,” he says. “Accurately simulating and modeling the photophysical behavior of these materials is challenging due to the large number of energy levels in these materials that all interact in complex ways, and Emory Chan has developed a unique model that objectively accounts for all of the over 10,000 manifold-to-manifold transitions in the allowed energy range.”Previously, Schuck says that the conventional wisdom for designing bright UCNPs had been to use a relatively small concentration of emitter ions in the nanoparticles, since too many emitters will lead to lower brightness due to self-quenching effects once the UCNP emitter concentration exceeds ~1%. “This turns out to be true if you want to make particles that are bright under ensemble imaging conditions – that is, where a relatively low excitation power is used – since you have many particles signaling collectively,” Schuck explains. “However, this breaks down under single-molecule imaging conditions.” In their paper, the researchers have demonstrated that under the higher excitation powers used for imaging single particles, the relevant energy levels become more saturated and self-quenching is reduced. “Therefore,” Schuck continues, “you want to include in your UCNPs as high a concentration of emitter ions as possible.” This results in the nanoparticles being almost non-luminescent at low-excitation-power ensemble conditions due to significant self-quenching, but ultra-bright under single-molecule imaging conditions. UCNP size-dependent luminescence intensity and heterogeneity. a, Deviation of single UCNP luminescence intensity normalized to particle volume from ideal volumetric scaling (n¼300 total). The curve represents calculated intensity normalized to volume for UCNPs with a nonluminescent surface layer of 1.7 nm. Only intensities from single, unaggregated nanocrystals, as determined by Supplementary Fig. 5, are used. The top inset shows a diagram representing an ideal nanocrystal in which with all included emitters are luminescent (green circles). The bottom inset is a diagram representing a nanocrystal with emitters that are nonluminescent (maroon circles) in an outer surface layer. b, Fine spectra of the green emission bands collected from four single 8 nm UCNPs (curves 1–4) and their averaged spectra (curve Sigma). Credit: Courtesy Daniel Gargas, Emory Chan, Bruce Cohen, and P. James Schuck, The Molecular Foundry, Lawrence Berkeley National Laboratory Experimental Setup for single UCNP optical characterization. A 980nm laser is prefocused with a 500mm lens before entering the back aperture of a 0.95 NA 100x Objective (Zeiss), which adjusts the focal plane of the laser closer to that of the visible luminescence (dashed line). Emitted light is collected back through the same objective, filtered by two 700nm short-pass filters and two 532nm long-pass filters (Chroma) to remove residual laser light, and focused onto a single photon counting APD (MPD) or routed to a LN-cooled CCD spectrometer (Princeton Instruments) with 1200 grooves/mm grating. A Time-Correlated Single Photon Counter (Picoquant) is used for luminescence lifetime measurements. All experiments were performed in ambient conditions at 106/cm2 unless otherwise noted. Power-dependent data and single particle line-cuts shown in Fig 4 were collected with a 1.4 NA 100x oil immersion objective (Nikon). Credit: Courtesy Daniel Gargas, Emory Chan, Bruce Cohen, and P. James Schuck, The Molecular Foundry, Lawrence Berkeley National Laboratory Another important implication of this finding, Schuck adds, is that it should change how people will screen for the best single-molecule luminescent probes in the future. “Until now,” he notes, “people would first look to see which probes were bright using ensemble-level conditions, then would investigate only that subset as possible single-molecule probes. Our new probes would, of course, have failed that screening test!” Schuck again emphasizes that “a key reason this discovery happened is that we have experts in all key areas in the same building, and we were able to quickly iterate through the theory-synthesis-characterization cycle.”Regarding future research directions, notes Schuck, the scientists are pursuing a few different avenues. “We’d certainly like to now use these newly-designed UCNPs for bioimaging….so far, we’ve only investigated the fundamental photophysical properties of these particles when they’re isolated on glass. We believe one exciting and important application will be their use in brain imaging – particularly for deep-tissue in vivo optical imaging of neurons and brain function. In closing, Schuck mentions other areas of research that might benefit from their study. “I think a primary application is in single-particle tracking within cells. For example,” he illustrates, “labeling specific proteins with individual UCNPs and tracking them to understand their cellular kinetics.” Along different lines, Schuck adds, it turns out that UCNPs are also excellent probes of very local electromagnetic fields. “This is because lanthanides have a rather unique set of photophysical properties such as relatively prevalent magnetic dipole emission, allowing us to probe optical magnetic fields, and very long lifetimes such that transitions are not strongly allowed, which allows us to more-easily probe cavity quantum optical effects such as the Purcell enhancement of emission. In fact, Schuck concludes, an experiment that uses UCNPs to report on the near-field strengths and field distributions surrounding nanoplasmonic devices is just underway.” When imaging at the single-molecule level, small irregularities known as heterogeneities become apparent – features that are lost in higher-scale, so-called ensemble imaging. At the same time, it has until recently been challenging to develop luminescent probes with the photostability, brightness and continuous emission necessary for single-molecule microscopy. Now, however, scientists in the Molecular Foundry at Lawrence Berkeley National Lab, Berkeley, CA have developed upconverting nanoparticles (UCNPs) under 10 nm in diameter whose brightness under single-particle imaging exceeds that of existing materials by over an order of magnitude. The researchers state that their findings make a range of applications possible, including cellular and in vivo imaging, as well as reporting on local electromagnetic near-field properties of complex nanostructures. This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only. Explore further Bright future for protein nanoprobes Citation: Bright lights, small crystals: Scientists use nanoparticles to capture images of single molecules (2014, April 22) retrieved 18 August 2019 from https://phys.org/news/2014-04-bright-small-crystals-scientists-nanoparticles.html More information: Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging, Nature Nanotechnology 9, 300–305 (2014), doi:10.1038/nnano.2014.29 Journal information: Nature Nanotechnology “This brings me to what is probably the most important takeaway from our work, which is the discovery and demonstration of new rules for designing ultrabright, ultrasmall UCNP single-molecule probes,” Schuck says. In addition, he stresses that these new rules contrast directly with conventional methods for creating bright UCNPs. “As we showed in our paper, we synthesized and imaged UCNPs as small as a single fluorescent protein! For many bioimaging applications, very small – certainly smaller than 10nm – luminescent probes are required because you really need the label or probe to perturb the system they are probing as little as possible.” Luminescence of UCNPs. a, Schematic of energy transfer upconversion with Yb3+ as sensitizer and Er3+ as emitter. b, Minimum peak excitation intensities of NIR light needed for multiphoton single-molecule imaging of various classes of luminescent probes. The peak excitation intensity ranges shown are required to detect signals of 100 c.p.s. Credit: Courtesy Daniel Gargas, Emory Chan, Bruce Cohen, and P. James Schuck, The Molecular Foundry, Lawrence Berkeley National Laboratorylast_img read more

CONTINUE READING
gclbnbol

Meet Dash and Dot Robot Toys That Teach Kids How to Code

first_img Register Now » Free Webinar | Sept 5: Tips and Tools for Making Progress Toward Important Goals Attend this free webinar and learn how you can maximize efficiency while getting the most critical things done right. December 23, 2014center_img 3 min read What’s harder: shopping for the holidays or teaching your kids the basics of computer programming? A startup called Wonder Workshop is aiming to make both a little easier.Based in San Mateo, Calif., Wonder Workshop builds robots that help teach children age 5 and up how to code. Initially named Play-i, the company was founded in 2012 by CEO Vikas Gupta, CTO Saurabh Gupta and Mikal Greaves, VP of product.The inquisitive robots the company has built — Dash and Dot – are blue and orange, one-eyed, round and chatty. They can sense objects around them (to prevent bumping into walls) and respond to light and sound.Wonder WorkshopRelated: This Is What Robots Will Be Doing in 2025The robots were designed to be “emotionally engaging,” and inspire kids’ creativity.  “The way that the head and eye move independent of the body, that drives engagement,” says Gupta. “We also wanted it to be something kids could imagine as anything — we didn’t want it to be something they were already familiar with like a four-legged animal or two-legged human — so it has three legs…and one eye.”Wonder Workshop has developed four different apps to use with Dash and Dot that aim to teach programming and coding lessons through music, mazes, paths and puzzles. Users on the older side can even try their hand at making their own iOS and Android applications for the robots through Wonder Workshop’s open API. Related: This Robotic Butler Could Make Your Next Hotel Stay…InterestingWonder WorkshopThe duo – which, together, carry a $259 price tag — connect to Apple and Android devices via Bluetooth and can be charged by a computer.Wonder Workshop raised $1 million in seed funding prior to launching a crowdfunding campaign in October 2013. The campaign quickly gained an enthusiastic following, generating $250,000 in four days, and ultimately netting $1.4 million. Wonder Workshop has gone on to raise an additional $8 million in Series A funding, according to Crunchbase.Gupta says he was inspired to create the robots from watching his young daughter at play, and ultimately, he says he could see them utilized not just at home, but in the classroom as well.Related: People Prefer Robot Bosses, Study Shows“We are working with schools to make it available and accessible for a classroom, and building specific applications that would work well in that setting,” he says.And there seems to be a need. Last year, only 44 percent of high-school graduates were prepared for college-level math and 36 percent were prepared for university-level science courses, according to the National Math and Science Initiative. To that end, Wonder Workshop promises to appeal to curious kids and parents who want to inspire an enthusiasm for coding and programming in their kids early.  Related: Meet Plantoid, the Robot That Grows Like the Roots of a Plant last_img read more

CONTINUE READING